Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability.

نویسندگان

  • Jasmina N Jovanovic
  • Philip Thomas
  • Josef T Kittler
  • Trevor G Smart
  • Stephen J Moss
چکیده

The efficacy of GABAergic synaptic inhibition is a principal factor in controlling neuronal activity. We demonstrate here that brain-derived neurotrophic factor modulates the activity of GABA(A) receptors, the main sites of fast synaptic inhibition in the brain, within minutes of application. Temporally, this comprised an early enhancement in the miniature IPSC amplitude, followed by a prolonged depression. This modulation was concurrent with enhanced PKC-mediated phosphorylation, followed by protein phosphatase 2A (PP2A)-mediated dephosphorylation of the GABA(A) receptor. Mechanistically, these events were facilitated by differential recruitment of PKC, receptor for activated C-kinase, and PP2A to GABA(A) receptors, depending on the phosphorylation state of the receptor beta3-subunit. Thus, transient formation of GABA(A) receptor signaling complexes has the potential to provide a basis for acute changes in receptor function underlying GABAergic synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors.

GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Althou...

متن کامل

Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition.

Brain-derived neurotrophic factor (BDNF) modulates several distinct aspects of synaptic transmission, including GABAergic transmission. Exposure to BDNF alters properties of GABA(A) receptors and induces changes in the expression level at the cell surface. Although phospholipase C-related inactive protein-1 (PRIP-1) plays an important role in GABA(A) receptor trafficking and function, its role ...

متن کامل

GIT1 and βPIX Are Essential for GABAA Receptor Synaptic Stability and Inhibitory Neurotransmission

Effective inhibitory synaptic transmission requires efficient stabilization of GABA(A) receptors (GABA(A)Rs) at synapses, which is essential for maintaining the correct excitatory-inhibitory balance in the brain. However, the signaling mechanisms that locally regulate synaptic GABA(A)R membrane dynamics remain poorly understood. Using a combination of molecular, imaging, and electrophysiologica...

متن کامل

Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus.

Brain-derived neurotrophic factor (BDNF) is one of neurotrophins involved in the development and maintenance of both the peripheral nervous system and CNS. Although the expression of BDNF and its receptor TrkB still occurs in the adult stage, their physiological role in the mature CNS is not fully understood. In the present study we examined in detail the possibility that BDNF modulates synapti...

متن کامل

Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites.

GABA(A) receptors (GABA(A)Rs) are the major mediators of fast synaptic inhibition in the brain. In neurons, these receptors undergo significant rates of endocytosis and exocytosis, processes that regulate both their accumulation at synaptic sites and the efficacy of synaptic inhibition. Here we have evaluated the role that neuronal activity plays in regulating the residence time of GABA(A)Rs on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2004